Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 141(12): 1411-1424, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36240433

RESUMO

STAT3 mutations, predominantly in the DNA-binding domain (DBD) and Src-homology 2 domain (SH2D), cause rare cases of immunodeficiency, malignancy, and autoimmunity. The exact mechanisms by which these mutations abrogate or enhance STAT3 function are not completely understood. Here, we examined how loss-of-function (LOF) and gain-of-function (GOF) STAT3 mutations within the DBD and SH2D affect monomer and homodimer protein stability as well as their effect on key STAT3 activation events, including recruitment to phosphotyrosine (pY) sites within peptide hormone receptors, tyrosine phosphorylation at Y705, dimerization, nuclear translocation, and DNA binding. The DBD LOF mutants showed reduced DNA binding when homodimerized, whereas the DBD GOF mutants showed increased DNA binding. DBD LOF and GOF mutants showed minimal changes in other STAT3 functions or in monomer or homodimer protein stability. However, SH2D LOF mutants demonstrated reduced conformational stability as either monomers or homodimers, leading to decreased pY-peptide recruitment, tyrosine phosphorylation, dimerization, nuclear localization, and DNA binding. In contrast, cancer-causing SH2D GOF mutants showed increased STAT3 homodimer stability, which increased their DNA binding. Of note, a small-molecule inhibitor of STAT3 that targets the tyrosine phosphopeptide-binding pocket within the STAT3 SH2D potently inhibited cell proliferation driven by STAT3 SH2D GOF mutants. These findings indicate that the stability of STAT3 protein monomer and homodimer is critical for the pathogenesis of diseases caused by SH2D LOF and GOF mutations and suggest that agents that modulate STAT3 monomer and/or homodimer protein stability may have therapeutic value in diseases caused by these mutations.


Assuntos
Fator de Transcrição STAT3 , Domínios de Homologia de src , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Mutação , Domínios de Homologia de src/genética , DNA/metabolismo , Tirosina/genética
2.
Front Immunol ; 13: 838344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251033

RESUMO

Anecdotal clinical reports suggested a benefit of adjunct immune checkpoint inhibitors (ICIs) to treat invasive mucormycosis. However, proof-of-concept data in animal models and mechanistic insights into the effects of ICIs on host defense against Mucorales are lacking. Therefore, we studied the effects of PD-1 and PD-L1 inhibitors (4 doses of 250 µg/kg) on outcomes and immunopathology of invasive pulmonary mucormycosis (IPM) in cyclophosphamide- and cortisone acetate-immunosuppressed mice. Rhizopus arrhizus-infected mice receiving either of the ICI treatments had significantly improved survival, less morbidity, and lower fungal burden compared to isotype-treated infected mice. While early improvement of morbidity/mortality was comparable between the ICI treatments, anti-PD-L1 provided more consistent sustained protection through day 7 post-infection than anti-PD-1. Both ICIs enhanced the fungicidal activity of ex-vivo splenocytes and effectively counteracted T-cell exhaustion; however, macrophages of ICI-treated mice showed compensatory upregulation of other checkpoint markers. Anti-PD-1 elicited stronger pulmonary release of proinflammatory cytokines and chemokines than anti-PD-L1, but also induced cytokines associated with potentially unfavorable type 2 T-helper-cell and regulatory T-cell responses. Although no signs of hyperinflammatory toxicity were observed, mice with IPM receiving ICIs, particularly anti-PD-1, had elevated serum levels of IL-6, a cytokine linked to ICI toxicities. Altogether, inhibition of the PD-1/PD-L1 pathway improved clinical outcomes of IPM in immunosuppressed mice, even without concomitant antifungals. PD-L1 inhibition yielded more favorable immune responses and more consistent protection from IPM-associated morbidity and mortality than PD-1 blockade. Future dose-effect studies are needed to define the "sweet spot" between ICI-induced augmentation of antifungal immunity and potential immunotoxicities.


Assuntos
Antígeno B7-H1 , Mucormicose , Animais , Antígeno B7-H1/metabolismo , Citocinas , Modelos Animais de Doenças , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Mucormicose/tratamento farmacológico , Receptor de Morte Celular Programada 1
4.
Biochem Pharmacol ; 192: 114688, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34274354

RESUMO

Signal Transducer and Activator of Transcription (STAT) 3 emerged rapidly as a high-value target for treatment of cancer. However, small-molecule STAT3 inhibitors have been slow to enter the clinic due, in part, to serious adverse events (SAE), including lactic acidosis and peripheral neuropathy, which have been attributed to inhibition of STAT3's mitochondrial function. Our group developed TTI-101, a competitive inhibitor of STAT3 that targets the receptor pY705-peptide binding site within the Src homology 2 (SH2) domain to block its recruitment and activation. TTI-101 has shown target engagement, no toxicity, and evidence of clinical benefit in a Phase I study in patients with solid tumors. Here we report that TTI-101 did not affect mitochondrial function, nor did it cause STAT3 aggregation, chemically modify STAT3 or cause neuropathic pain. Instead, TTI-101 unexpectedly suppressed neuropathic pain induced by chemotherapy or in a spared nerve injury model. Thus, in addition to its direct anti-tumor effect, TTI-101 may be of benefit when administered to cancer patients at risk of developing chemotherapy-induced peripheral neuropathy (CIPN).


Assuntos
Hiperalgesia/tratamento farmacológico , Naftóis/uso terapêutico , Neuralgia/tratamento farmacológico , Fosforilação Oxidativa/efeitos dos fármacos , Fator de Transcrição STAT3/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Tato , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Naftóis/farmacologia , Neuralgia/metabolismo , Fator de Transcrição STAT3/metabolismo , Sulfonamidas/farmacologia
5.
Pharmacol Res ; 169: 105637, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33932608

RESUMO

Efforts to develop STAT3 inhibitors have focused on its SH2 domain starting with short phosphotyrosylated peptides based on STAT3 binding motifs, e.g. pY905LPQTV within gp130. Despite binding to STAT3 with high affinity, issues regarding stability, bioavailability, and membrane permeability of these peptides, as well as peptidomimetics such as CJ-887, have limited their further clinical development and led to interest in small-molecule inhibitors. Some small molecule STAT3 inhibitors, identified using structure-based virtual ligand screening (SB-VLS); while having favorable drug-like properties, suffer from weak binding affinities, possibly due to the high flexibility of the target domain. We conducted molecular dynamic (MD) simulations of the SH2 domain in complex with CJ-887, and used an averaged structure from this MD trajectory as an "induced-active site" receptor model for SB-VLS of 110,000 compounds within the SPEC database. Screening was followed by re-docking and re-scoring of the top 30% of hits, selection for hit compounds that directly interact with pY + 0 binding pocket residues R609 and S613, and testing for STAT3 targeting in vitro, which identified two lead hits with good activity and favorable drug-like properties. Unlike most small-molecule STAT3 inhibitors previously identified, which contain negatively-charged moieties that mediate binding to the pY + 0 binding pocket, these compounds are uncharged and likely will serve as better candidates for anti-STAT3 drug development. IMPLICATIONS: SB-VLS, using an averaged structure from molecular dynamics (MD) simulations of STAT3 SH2 domain in a complex with CJ-887, a known peptidomimetic binder, identify two highly potent, neutral, low-molecular weight STAT3-inhibitors with favorable drug-like properties.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Fator de Transcrição STAT3/antagonistas & inibidores , Domínios de Homologia de src , Alquilação , Sítios de Ligação/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Domínios de Homologia de src/efeitos dos fármacos
6.
Am J Physiol Renal Physiol ; 319(1): F84-F92, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32475130

RESUMO

Loss of muscle proteins increases the morbidity and mortality of patients with chronic kidney disease (CKD), and there are no reliable preventive treatments. We uncovered a STAT3/CCAAT-enhancer-binding protein-δ to myostatin signaling pathway that activates muscle protein degradation in mice with CKD or cancer; we also identified a small-molecule inhibitor of STAT3 (TTI-101) that blocks this pathway. To evaluate TTI-101 as a treatment for CKD-induced cachexia, we measured TTI-101 pharmacokinetics and pharmacodynamics in control and CKD rats that were orally administered TTI-101or its diluent. The following two groups of gavage-fed rats were studied: sham-operated control rats and CKD rats. Plasma was collected serially (0, 0.25, 0.5, 1, 2, 4, 8, and 24 h) following TTI-101 administration (at oral doses of 0, 10, 30, or 100 mg/kg). Plasma levels of TTI-101 were measured by LC-MS/MS, and pharmacokinetic results were analyzed with the PKSolver program. Plasma TTI-101 levels increased linearly with doses; the maximum plasma concentrations and time to maximal plasma levels (~1 h) were similar in sham-operated control rats and CKD rats. Notably, gavage treatment of TTI-101 for 3 days produced TTI-101 muscle levels in sham control rats and CKD rats that were not significantly different. CKD rats that received TTI-101 for 7 days had suppression of activated STAT3 and improved muscle grip strength; there also was a trend for increasing body and muscle weights. TTI-101 was tolerated at doses of 100 mg·kg-1·day-1 for 7 days. These results with TTI-101 in rats warrant its development as a treatment for cachexia in humans.


Assuntos
Inibidores Enzimáticos/farmacologia , Músculo Esquelético/efeitos dos fármacos , Naftóis/farmacologia , Proteólise/efeitos dos fármacos , Insuficiência Renal Crônica/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Cromatografia Líquida , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacocinética , Força da Mão , Músculo Esquelético/metabolismo , Naftóis/farmacocinética , Ratos , Sulfonamidas/farmacocinética , Espectrometria de Massas em Tandem
7.
Org Biomol Chem ; 18(17): 3288-3296, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32286579

RESUMO

Recurrence and drug resistance are major challenges in the treatment of acute myeloid leukemia (AML) that spur efforts to identify new clinical targets and active agents. STAT3 has emerged as a potential target in resistant AML, but inhibiting STAT3 function has proven challenging. This paper describes synthetic studies and biological assays for a naphthalene sulfonamide inhibitor class of molecules that inhibit G-CSF-induced STAT3 phosphorylation in cellulo and induce apoptosis in AML cells. We describe two different approaches to inhibitor design: first, variation of substituents on the naphthalene sulfonamide core allows improvements in anti-STAT activity and creates a more thorough understanding of anti-STAT SAR. Second, a novel approach involving hybrid sulfonamide-rhodium(ii) conjugates tests our ability to use cooperative organic-inorganic binding for drug development, and to use SAR studies to inform metal conjugate design. Both approaches have produced compounds with improved binding potency. In vivo and in cellulo experiments further demonstrate that these approaches can also lead to improved activity in living cells, and that compound 3aa slows disease progression in a xenograft model of AML.


Assuntos
Antineoplásicos/química , Leucemia Mieloide Aguda/tratamento farmacológico , Naftalenos/química , Inibidores de Proteínas Quinases/química , Fator de Transcrição STAT3/antagonistas & inibidores , Sulfonamidas/química , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Modelos Moleculares , Terapia de Alvo Molecular , Neoplasias Experimentais , Oxirredução , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/genética , Relação Estrutura-Atividade
8.
Pharmacol Rev ; 72(2): 486-526, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32198236

RESUMO

Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.


Assuntos
Fibrose/tratamento farmacológico , Inflamação/tratamento farmacológico , Janus Quinases/antagonistas & inibidores , Janus Quinases/metabolismo , Neoplasias/tratamento farmacológico , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Fibrose/metabolismo , Humanos , Inflamação/metabolismo , Janus Quinases/genética , Terapia de Alvo Molecular , Neoplasias/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Fator de Transcrição STAT3/genética
10.
Int J Mol Sci ; 19(8)2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30081609

RESUMO

Signal transducer and activator of transcription (STAT) 3 plays a central role in the host response to injury. It is activated rapidly within cells by many cytokines, most notably those in the IL-6 family, leading to pro-proliferative and pro-survival programs that assist the host in regaining homeostasis. With persistent activation, however, chronic inflammation and fibrosis ensue, leading to a number of debilitating diseases. This review summarizes advances in our understanding of the role of STAT3 and its targeting in diseases marked by chronic inflammation and/or fibrosis with a focus on those with the largest unmet medical need.


Assuntos
Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Fibrose/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Asma/imunologia , Asma/metabolismo , Caquexia/imunologia , Caquexia/metabolismo , Colite Ulcerativa/imunologia , Doença de Crohn/imunologia , Fibrose/imunologia , Humanos
11.
Blood ; 128(26): 3061-3072, 2016 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-27799162

RESUMO

Autosomal dominant hyper-IgE syndrome (AD-HIES) is caused by dominant-negative mutations in STAT3; however, the molecular basis for mutant STAT3 allele dysfunction is unclear and treatment remains supportive. We hypothesized that AD-HIES mutations decrease STAT3 protein stability and that mutant STAT3 activity can be improved by agents that increase chaperone protein activity. We used computer modeling to characterize the effect of STAT3 mutations on protein stability. We measured STAT3 protein half-life (t1/2) and determined levels of STAT3 phosphorylated on tyrosine (Y) 705 (pY-STAT3) and mRNA levels of STAT3 gene targets in Epstein-Barr virus-transformed B (EBV) cells, human peripheral blood mononuclear cells (PBMCs), and mouse splenocytes incubated without or with chaperone protein modulators-HSF1A, a small-molecule TRiC modulator, or geranylgeranylacetone (GGA), a drug that upregulates heat shock protein (HSP) 70 and HSP90. Computer modeling predicted that 81% of AD-HIES mutations are destabilizing. STAT3 protein t1/2 in EBV cells from AD-HIES patients with destabilizing STAT3 mutations was markedly reduced. Treatment of EBV cells containing destabilizing STAT3 mutations with either HSF1A or GGA normalized STAT3 t1/2, increased pY-STAT3 levels, and increased mRNA levels of STAT3 target genes up to 79% of control. In addition, treatment of human PBMCs or mouse splenocytes containing destabilizing STAT3 mutations with either HSF1A or GGA increased levels of cytokine-activated pY-STAT3 within human CD4+ and CD8+ T cells and numbers of IL-17-producing CD4+ mouse splenocytes, respectively. Thus, most AD-HIES STAT3 mutations are destabilizing; agents that modulate chaperone protein function improve STAT3 stability and activity in T cells and may provide a specific treatment.


Assuntos
Síndrome de Job/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Citocinas/farmacologia , Proteínas de Ligação a DNA/metabolismo , Diterpenos/farmacologia , Meia-Vida , Fatores de Transcrição de Choque Térmico , Herpesvirus Humano 4/fisiologia , Humanos , Interleucina-17/metabolismo , Síndrome de Job/patologia , Camundongos , Modelos Moleculares , Proteínas Mutantes/metabolismo , Mutação/genética , Fosfotirosina/metabolismo , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Baço/patologia , Fatores de Transcrição/metabolismo
12.
Biophys J ; 110(11): 2377-2385, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27276256

RESUMO

AML1-ETO is the translational product of a chimeric gene created by the stable chromosome translocation t (8;21)(q22;q22). It causes acute myeloid leukemia (AML) by dysregulating the expression of genes critical for myeloid cell development and differentiation and recently has been reported to bind multiple subunits of the mammalian cytosolic chaperonin TRiC (or CCT), primarily through its DNA binding domain (AML1-175). Through these interactions, TRiC plays an important role in the synthesis, folding, and activity of AML1-ETO. Using single-particle cryo-electron microscopy, we demonstrate here that a folding intermediate of AML1-ETO's DNA-binding domain (AML1-175) forms a stable complex with apo-TRiC. Our structure reveals that AML1-175 associates directly with a specific subset of TRiC subunits in the open conformation.


Assuntos
Chaperonina com TCP-1/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Western Blotting , Cromatografia em Gel , Microscopia Crioeletrônica , DNA/metabolismo , Compostos de Ouro , Proteínas de Choque Térmico HSP70/metabolismo , Células HeLa , Humanos , Imageamento Tridimensional , Espectrometria de Massas , Nanopartículas Metálicas , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Estabilidade Proteica , Proteína 1 Parceira de Translocação de RUNX1
13.
Cell Rep ; 15(4): 843-856, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27149849

RESUMO

Upon growth factor stimulation or in some EGFR mutant cancer cells, PKM2 translocates into the nucleus to induce glycolysis and cell growth. Here, we report that nuclear PKM2 binds directly to poly-ADP ribose, and this PAR-binding capability is critical for its nuclear localization. Accordingly, PARP inhibition prevents nuclear retention of PKM2 and therefore suppresses cell proliferation and tumor growth. In addition, we found that PAR level correlates with nuclear localization of PKM2 in EGFR mutant brain and lung cancers, suggesting that PAR-dependent nuclear localization of PKM2 likely contributes to tumor progression in EGFR mutant glioblastoma and lung cancers. In addition, some EGFR-inhibitor-resistant lung cancer cells are sensitive to PARP inhibitors. Taken together, our data indicate that suppression of PKM2 nuclear function by PARP inhibitors represents a treatment strategy for EGFR-inhibitor-resistant cancers.

14.
Biomed Res Int ; 2016: 1959270, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26981525

RESUMO

Doxorubicin (DOX), an anthracycline, is broadly considered the most active single agent available for treating breast cancer but has been known to induce cardiotoxicity. Although DOX is highly effective in treating triple-negative breast cancer (TNBC), DOX can have poor outcomes owing to induction of chemoresistance. There is an urgent need to develop new therapies for TNBC aimed at improving DOX outcome and DOX-induced cardiotoxicity. Substance P (SP), a neuropeptide involved in pain transmission is known to stimulate production of reactive oxygen species (ROS). Elevated cardiac ROS is linked with heart injury and failure. We investigated the role of SP in chemotherapy-associated death of cardiomyocytes and chemoresistance. We showed that pretreating a cardiomyocyte cell line (H9C2) and a TNBC cell line (MDA-MB 231) with aprepitant, a SP receptor antagonist that is routinely used to treat chemotherapy-associated associated nausea, decreased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in cardiomyocytes and increased DOX-induced reduction of cell viability, apoptotic cell death, and ROS production in TNBC cells compared with cells treated with DOX alone. Our findings demonstrate the ability of aprepitant to decrease DOX-induced killing of cardiomyocytes and to increase cancer cell sensitivity to DOX, which has tremendous clinical significance.


Assuntos
Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/efeitos adversos , Receptores da Neurocinina-1/genética , Neoplasias de Mama Triplo Negativas/complicações , Animais , Apoptose/efeitos dos fármacos , Aprepitanto , Cardiotoxicidade/genética , Cardiotoxicidade/patologia , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Morfolinas/administração & dosagem , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
15.
Oncotarget ; 7(18): 26307-30, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27027445

RESUMO

While STAT3 has been validated as a target for treatment of many cancers, including head and neck squamous cell carcinoma (HNSCC), a STAT3 inhibitor is yet to enter the clinic. We used the scaffold of C188, a small-molecule STAT3 inhibitor previously identified by us, in a hit-to-lead program to identify C188-9. C188-9 binds to STAT3 with high affinity and represents a substantial improvement over C188 in its ability to inhibit STAT3 binding to its pY-peptide ligand, to inhibit cytokine-stimulated pSTAT3, to reduce constitutive pSTAT3 activity in multiple HNSCC cell lines, and to inhibit anchorage dependent and independent growth of these cells. In addition, treatment of nude mice bearing xenografts of UM-SCC-17B, a radioresistant HNSCC line, with C188-9, but not C188, prevented tumor xenograft growth. C188-9 treatment modulated many STAT3-regulated genes involved in oncogenesis and radioresistance, as well as radioresistance genes regulated by STAT1, due to its potent activity against STAT1, in addition to STAT3. C188-9 was well tolerated in mice, showed good oral bioavailability, and was concentrated in tumors. Thus, C188-9, either alone or in combination with radiotherapy, has potential for use in treating HNSCC tumors that demonstrate increased STAT3 and/or STAT1 activation.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Naftóis/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Nus , Naftóis/síntese química , Tolerância a Radiação/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Sulfonamidas/síntese química , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Biol Chem ; 291(9): 4732-41, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26706127

RESUMO

AML1-ETO is the most common fusion oncoprotein causing acute myeloid leukemia (AML), a disease with a 5-year survival rate of only 24%. AML1-ETO functions as a rogue transcription factor, altering the expression of genes critical for myeloid cell development and differentiation. Currently, there are no specific therapies for AML1-ETO-positive AML. While known for decades to be the translational product of a chimeric gene created by the stable chromosome translocation t(8;21)(q22;q22), it is not known how AML1-ETO achieves its native and functional conformation or whether this process can be targeted for therapeutic benefit. Here, we show that the biosynthesis and folding of the AML1-ETO protein is facilitated by interaction with the essential eukaryotic chaperonin TRiC (or CCT). We demonstrate that a folding intermediate of AML1-ETO binds to TRiC directly, mainly through its ß-strand rich, DNA-binding domain (AML-(1-175)), with the assistance of HSP70. Our results suggest that TRiC contributes to AML1-ETO proteostasis through specific interactions between the oncoprotein's DNA-binding domain, which may be targeted for therapeutic benefit.


Assuntos
Chaperonina com TCP-1/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Modelos Moleculares , Proteínas de Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Animais , Bovinos , Sobrevivência Celular , Chaperonina com TCP-1/antagonistas & inibidores , Chaperonina com TCP-1/química , Subunidade alfa 2 de Fator de Ligação ao Core/química , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células HEK293 , Humanos , Imunoprecipitação , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Subunidades Proteicas , Proteína 1 Parceira de Translocação de RUNX1 , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Reticulócitos/metabolismo
17.
Int J Mol Sci ; 16(11): 26706-20, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26561808

RESUMO

The folding of newly synthesized proteins and the maintenance of pre-existing proteins are essential in sustaining a living cell. A network of molecular chaperones tightly guides the folding, intracellular localization, and proteolytic turnover of proteins. Many of the key regulators of cell growth and differentiation have been identified as clients of molecular chaperones, which implies that chaperones are potential mediators of oncogenesis. In this review, we briefly provide an overview of the role of chaperones, including HSP70 and HSP90, in cancer. We further summarize and highlight the emerging the role of chaperonin TRiC (T-complex protein-1 ring complex, also known as CCT) in the development and progression of cancer mediated through its critical interactions with oncogenic clients that modulate growth deregulation, apoptosis, and genome instability in cancer cells. Elucidation of how TRiC modulates the folding and function of oncogenic clients will provide strategies for developing novel cancer therapies.


Assuntos
Carcinogênese/genética , Chaperonina com TCP-1/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/química , Neoplasias/genética , Apoptose , Carcinogênese/metabolismo , Carcinogênese/patologia , Chaperonina com TCP-1/metabolismo , Progressão da Doença , Instabilidade Genômica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Conformação Proteica , Dobramento de Proteína , Transdução de Sinais
18.
Angew Chem Int Ed Engl ; 54(44): 13085-9, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26480340

RESUMO

Nearly 40 % of children with acute myeloid leukemia (AML) suffer relapse arising from chemoresistance, often involving upregulation of the oncoprotein STAT3 (signal transducer and activator of transcription 3). Herein, rhodium(II)-catalyzed, proximity-driven modification identifies the STAT3 coiled-coil domain (CCD) as a novel ligand-binding site, and we describe a new naphthalene sulfonamide inhibitor that targets the CCD, blocks STAT3 function, and halts its disease-promoting effects in vitro, in tumor growth models, and in a leukemia mouse model, validating this new therapeutic target for resistant AML.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Naftalenos/farmacologia , Ródio/química , Fator de Transcrição STAT3/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Sítios de Ligação/efeitos dos fármacos , Catálise , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Naftalenos/química , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/química
19.
Lung Cancer ; 90(2): 182-90, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26410177

RESUMO

OBJECTIVE: Lung cancer is the leading cause of cancer death in both men and women. Non-small cell lung cancer (NSCLC) has an overall 5-year survival rate of 15%. While aberrant STAT3 activation has previously been observed in NSCLC, the scope of its contribution is uncertain and agents that target STAT3 for treatment are not available clinically. METHODS: We determined levels of activated STAT3 (STAT3 phosphorylated on Y705, pSTAT3) and the two major isoforms of STAT3 (α and ß) in protein extracts of 8 NSCLC cell lines, as well as the effects of targeting STAT3 in vitro and in vivo in NSCLC cells using short hairpin (sh) RNA and two novel small-molecule STAT3 inhibitors, C188-9 and piperlongumine (PL). RESULTS: Levels of pSTAT3, STAT3α, and STATß were increased in 7 of 8 NSCLC cell lines. Of note, levels of pSTAT3 were tightly correlated with levels of STAT3ß, but not STAT3α. Targeting of STAT3 in A549 cells using shRNA decreased tSTAT3 by 75%; this was accompanied by a 47-78% reduction in anchorage-dependent and anchorage-independent growth and a 28-45% reduction in mRNA levels for anti-apoptotic STAT3 gene targets. C188-9 and PL (@30 µM) each reduced pSTAT3 levels in all NSCLC cell lines tested by ≥50%, reduced anti-apoptotic protein mRNA levels by 25-60%, and reduced both anchorage-dependent and anchorage-independent growth of NSCLC cell lines with IC50 values ranging from 3.06 to 52.44 µM and 0.86 to 11.66 µM, respectively. Treatment of nude mice bearing A549 tumor xenografts with C188-9 or PL blocked tumor growth and reduced levels of pSTAT3 and mRNA encoding anti-apoptotic proteins. CONCLUSION: STAT3 is essential for growth of NSCLC cell lines and tumors and its targeting using C188-9 or PL may be a useful strategy for treatment.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pulmão/efeitos dos fármacos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Fosforilação/efeitos dos fármacos , Fosforilação/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Ativação Transcricional/genética
20.
Cancers (Basel) ; 6(4): 2012-34, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25268166

RESUMO

Since its discovery in mice and humans 19 years ago, the contribution of alternatively spliced Stat3, Stat3ß, to the overall functions of Stat3 has been controversial. Tyrosine-phosphorylated (p) Stat3ß homodimers are more stable, bind DNA more avidly, are less susceptible to dephosphorylation, and exhibit distinct intracellular dynamics, most notably markedly prolonged nuclear retention, compared to pStat3α homodimers. Overexpression of one or the other isoform in cell lines demonstrated that Stat3ß acted as a dominant-negative of Stat3α in transformation assays; however, studies with mouse strains deficient in one or the other isoform indicated distinct contributions of Stat3 isoforms to inflammation. Current immunological reagents cannot differentiate Stat3ß proteins derived from alternative splicing vs. proteolytic cleavage of Stat3α. We developed monoclonal antibodies that recognize the 7 C-terminal amino acids unique to Stat3ß (CT7) and do not cross-react with Stat3α. Immunoblotting studies revealed that levels of Stat3ß protein, but not Stat3α, in breast cancer cell lines positively correlated with overall pStat3 levels, suggesting that Stat3ß may contribute to constitutive Stat3 activation in this tumor system. The ability to unambiguously discriminate splice alternative Stat3ß from proteolytic Stat3ß and Stat3α will provide new insights into the contribution of Stat3ß vs. Stat3α to oncogenesis, as well as other biological and pathological processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...